Roles of Fatty Acid Oversupply and Impaired Oxidation in Lipid Accumulation in Tissues of Obese Rats

نویسندگان

  • Nicholas D. Oakes
  • Ann Kjellstedt
  • Pia Thalén
  • Bengt Ljung
  • Nigel Turner
چکیده

To test the roles of lipid oversupply versus oxidation in causing tissue lipid accumulation associated with insulin resistance/obesity, we studied in vivo fatty acid (FA) metabolism in obese (Obese) and lean (Lean) Zucker rats. Indices of local FA utilization and storage were calculated using the partially metabolizable [9,10-(3)H]-(R)-2-bromopalmitate ((3)H-R-BrP) and [U-(14)C]-palmitate ((14)C-P) FA tracers, respectively. Whole-body FA appearance (R a ) was estimated from plasma (14)C-P kinetics. Whole-body FA oxidation rate (R ox) was assessed using (3)H2O production from (3)H-palmitate infusion, and tissue FA oxidative capacity was evaluated ex vivo. In the basal fasting state Obese had markedly elevated FA levels and R a , associated with elevated FA utilization and storage in most tissues. Estimated rates of muscle FA oxidation were not lower in obese rats and were similarly enhanced by contraction in both lean and obese groups. At comparable levels of FA availability, achieved by nicotinic acid, R ox was lower in Obese than Lean. In Obese rats, FA oxidative capacity was 35% higher than that in Lean in skeletal muscle, 67% lower in brown fat and comparable in other organs. In conclusion, lipid accumulation in non-adipose tissues of obese Zucker rats appears to result largely from systemic FA oversupply.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Impaired long-chain fatty acid oxidation and contractile dysfunction in the obese Zucker rat heart.

We investigated whether decreased responsiveness of the heart to physiological increases in fatty acid availability results in lipid accumulation and lipotoxic heart disease. Lean and obese Zucker rats were either fed ad libitum or fasted overnight. Fasting increased plasma nonesterified fatty acid levels in both lean and obese rats, although levels were greatest in obese rats regardless of nut...

متن کامل

LA and ALA prevent glucose intolerance in obese male rats without reducing reactive lipid content, but cause tissue-specific changes in fatty acid composition.

While the cause of Type 2 diabetes remains poorly defined, the accumulation of reactive lipids within white adipose tissue, skeletal muscle, and liver have been repeatedly implicated as underlying mechanisms. The ability of polyunsaturated fatty acids (PUFAs) to prevent the development of insulin resistance has gained considerable interest in recent years; however, the mechanisms-of-action rema...

متن کامل

Excess lipid availability increases mitochondrial fatty acid oxidative capacity in muscle: evidence against a role for reduced fatty acid oxidation in lipid-induced insulin resistance in rodents.

A reduced capacity for mitochondrial fatty acid oxidation in skeletal muscle has been proposed as a major factor leading to the accumulation of intramuscular lipids and their subsequent deleterious effects on insulin action. Here, we examine markers of mitochondrial fatty acid oxidative capacity in rodent models of insulin resistance associated with an oversupply of lipids. C57BL/6J mice were f...

متن کامل

Lipid exposure elicits differential responses in gene expression and DNA methylation in primary human skeletal muscle cells from severely obese women.

The skeletal muscle of obese individuals exhibits an impaired ability to increase the expression of genes linked with fatty acid oxidation (FAO) upon lipid exposure. The present study determined if this response could be attributed to differential DNA methylation signatures. RNA and DNA were isolated from primary human skeletal muscle cells (HSkMC) from lean and severely obese women following l...

متن کامل

Resveratrol reduces lipid accumulation through upregulating the expression of microRNAs regulating fatty acid bet oxidation in liver cells: Evidence from in vivo and in vitro studies

MicroRNAs has been shown to regulate lipogenesis in liver. The aim of the present study was to investigate whether the effects of resveratrol (RSV) on lipogenesis is associated with the changes in the expression of two miRNAs (miR-107 and miR-10b) that regulate lipogenic pathways. 30 wild type C57BL/6j male mice were randomly fed three diets: a standard chow diet (ND), a high fat diet (HFD, 60%...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2013  شماره 

صفحات  -

تاریخ انتشار 2013